Python Programming with AI Syllabus
Phase 1: Python Programming Basics (Beginner Level)
1. Introduction to Python
- Why Python? Real-world examples
- Installing Python and setting up your environment (IDLE, VS Code, Jupyter Notebook)
- Your first “Hello World” program
2. Basic Syntax & Variables
- Variables and data types (int, float, string, boolean)
- Comments and code readability
- Taking user input
3. Operators in Python
- Arithmetic, comparison, logical, assignment
- Real examples like a mini calculator
4. Conditional Statements
- If, else, elif
- Nested conditions
- Real-life use: Decision making in an AI chatbot
5. Loops
- For loop and while loop
- Using range()
- Break, continue and pass
6. Functions
- Defining and calling functions
- Parameters and return values
- Lambda (anonymous) functions
7. Data Structures
- Lists, tuples, sets, dictionaries
- Real examples: Grocery list, contact book
8. String Manipulation
- String slicing, formatting, methods
- Use in NLP (Natural Language Processing) preview
Phase 2: Intermediate Python Programming
9. File Handling
- Reading and writing files (.txt, .csv)
- Example: Writing user data to a file
10. Exception Handling
- Try, except, finally blocks
- Raise errors manually
11. Object-Oriented Programming (OOP)
- Classes and objects
- Constructors (init)
- Inheritance, encapsulation, and polymorphism
- Real-world example: Building a robot class
12. Modules and Libraries
- Importing modules (math, random, datetime)
- Creating your own module
13. Virtual Environments & Pip
- Creating isolated environments
- Installing packages using pip
Phase 3: Python for Data Handling
14. NumPy
- Arrays vs Lists
- Array operations
- Statistics and math functions
15. Pandas
- DataFrames and Series
- Reading CSV, Excel
- Filtering, sorting, grouping data
16. Data Visualization
- Matplotlib: Line plots, bar charts, histograms
- Seaborn: Heatmaps, pair plots
17. Real Project
- Analyzing a real dataset (e.g., Titanic, COVID-19)
- Drawing conclusions
Phase 4: Python for AI (Machine Learning)
18. Intro to AI & ML
- What is AI, ML, Deep Learning – simple explanation
- Types of ML: Supervised, Unsupervised, Reinforcement
19. Scikit-learn Basics
- Train-test split
- Accuracy score, confusion matrix
20. Supervised Learning Algorithms
- Linear Regression
- Logistic Regression
- Decision Trees & Random Forest
21. Unsupervised Learning
- Clustering (K-Means)
- Dimensionality reduction (PCA)
22. Model Evaluation
- Overfitting and underfitting
- Cross-validation
- Grid search
23. Mini ML Projects
- Predict house prices
- Detect spam messages
- Classify handwritten digits (MNIST)
Phase 5: Python for Deep Learning (Using AI Libraries)
24. TensorFlow & Keras Basics
- Installing TensorFlow
- Creating neural networks using Keras
- Activation functions (ReLU, sigmoid)
25. Image Classification
- Using CNN (Convolutional Neural Networks)
- Dataset: CIFAR-10 or Fashion MNIST
26. Natural Language Processing (NLP)
- Tokenization, stemming, lemmatization
- Sentiment analysis
- Building a simple chatbot
27. Advanced Topics (Optional)
- Transfer learning
- Generative AI overview (GANs)
- Object detection basics
Phase 6: Final Projects + Deployment
28. Real AI Projects (Choose 2-3)
- AI Personal Assistant (text-based)
- Movie recommendation system
- Image classifier app
29. Web + AI (Bonus)
- Flask basics for web apps
- Integrate ML model with Flask
30. Deployment
- Exporting models using pickle or joblib
- Hosting on platforms like Streamlit, Heroku
